Study of Unsteady Two Phase Flow over An Inclined Permeable Stretching Sheet with Effects of Electrification and Radiation

نویسندگان

چکیده

An analysis on flow and heat transfer with in a two-dimensional unsteady radiative boundary layer fluid-particle interaction has been studied. The is occurred due to the suddenly linear movement of an inclined permeable stretching sheet. considered neutral medium where no external electric or magnetic field supplied. But random motion particles leads between fluid-particle, particle-particle particle-wall, tribo-electric effect occurs. As result, both fluid as well are electrified which creates major impact field. Hence, balanced mathematical model formulated considering electrification radiation parameter phases. Using similarity transformation, governing equations transferred ODEs solved by built solver Bvp4c MATLAB. impacts various parameters have discussed determined characteristics. stronger filed significantly enhances temperature particle phase, occurs more surface.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation

The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...

متن کامل

Impact of thermal radiation and viscous dissipation on hydromagnetic unsteady flow over an exponentially inclined preamble stretching sheet

The present numerical attempt deals the sway to transfer of heat and mass characteristics on the time-dependent hydromagnetic boundary layer flow of a viscous fluid over an exponentially inclined preamble stretching. Furthermore, the role of viscous heating, thermal radiation, uneven energy gain or loss, velocity slip, thermal slip and solutal slips are depicted. The prevailing time-dependent P...

متن کامل

MHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink

The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential eq...

متن کامل

Dufour and Soret Effects on Unsteady Heat and Mass Transfer for Powell-Eyring Fluid Flow over an Expanding Permeable Sheet

In the present analysis, the Dufour and Soret effects on unsteady heat-mass transfer of a viscous incompressible Powell-Eyring fluids flow past an expanding/shrinking permeable sheet are reported. The fluid boundary layer develops over the variable sheet with suction/injection to the non-uniform free stream velocity. Under the symmetry group of transformations, the governing equations along wit...

متن کامل

mhd boundary layer flow of a nanofluid over an exponentially permeable stretching sheet with radiation and heat source/sink

the problem of steady magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. the effect of transverse brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. the governing partial differential eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

سال: 2022

ISSN: ['2289-7879']

DOI: https://doi.org/10.37934/arfmts.97.2.2638